Effects of multi-layer graphene capping on Cu interconnects.

نویسندگان

  • Chang Goo Kang
  • Sung Kwan Lim
  • Sangchul Lee
  • Sang Kyung Lee
  • Chunhum Cho
  • Young Gon Lee
  • Hyeon Jun Hwang
  • Younghun Kim
  • Ho Jun Choi
  • Sun Hee Choe
  • Moon-Ho Ham
  • Byoung Hun Lee
چکیده

The benefits of multi-layer graphene (MLG) capping on Cu interconnects have been experimentally demonstrated. The resistance of MLG capped Cu wires improved by 2-7% compared to Cu wires. The breakdown current density increased by 18%, suggesting that the MLG can act as an excellent capping material for Cu interconnects, improving the reliability characteristics. With a proper process optimization, MLG capped Cu interconnects could become a promising technology for high density back end-of-line interconnects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct-Liquid-Evaporation Chemical Vapor Deposition of Nanocrystalline Cobalt Metal for Nanoscale Copper Interconnect Encapsulation.

In advanced microelectronics, precise design of liner and capping layers become critical, especially when it comes to the fabrication of Cu interconnects with dimensions lower than its mean free path. Herein, we demonstrate that direct-liquid-evaporation chemical vapor deposition (DLE-CVD) of Co is a promising method to make liner and capping layers for nanoscale Cu interconnects. DLE-CVD makes...

متن کامل

A Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment

In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...

متن کامل

Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line ‎Model

Time domain analysis of multilayer graphene nanoribbon (MLGNR) interconnects, based on ‎transmission line modeling (TLM) using a six-order linear parametric expression, has been ‎presented for the first time. We have studied the effects of interconnect geometry along with ‎its contact resistance on its step response and Nyquist stability. It is shown that by increasing ‎interconnects dimensions...

متن کامل

Graphene as an atomically thin barrier to Cu diffusion into Si.

The evolution of copper-based interconnects requires the realization of an ultrathin diffusion barrier layer between the Cu interconnect and insulating layers. The present work reports the use of atomically thin layer graphene as a diffusion barrier to Cu metallization. The diffusion barrier performance is investigated by varying the grain size and thickness of the graphene layer; single-layer ...

متن کامل

Non-Local Thermo-Elastic Buckling Analysis of Multi-Layer Annular/Circular Nano-Plates Based on First and Third Order Shear Deformation Theories Using DQ Method

In present study, thermo-elastic buckling analysis of multi-layer orthotropic annular/circular graphene sheets is investigated based on Eringen’s theory. The moderately thick and also thick nano-plates are considered. Using the non-local first and third order shear deformation theories, the governing equations are derived. The van der Waals interaction between the layers is simulated for multi-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 24 11  شماره 

صفحات  -

تاریخ انتشار 2013